2 1 औसत मॉडल एमए मॉडल चल रहा है। एआरआईएए मॉडल के रूप में जाने वाले टाइम सीरीज मॉडल में आटोमैरेसिव शब्द शामिल हो सकते हैं या औसत पदों में शामिल हो सकते हैं 1 सप्ताह में, हमने एक्सपी के चरम मूल्य के लिए एक समय श्रृंखला मॉडल में एक ऑटोरेग्रेजिव टर्म सीखा है उदाहरण के लिए , एक अंतराल 1 आत्मकेंद्रित शब्द एक्स टी -1 गुणांक द्वारा गुणा किया जाता है यह सबक चलती औसत शब्दों को परिभाषित करता है। एक समय श्रृंखला मॉडल में चलती औसत अवधि एक गुणांक द्वारा गुणा की गई एक पिछली त्रुटि है। लेफ्ट वाल्ट ओवरेट एन 0, सिग्मा 2 डब्ल्यू, जिसका अर्थ है कि वेट समान रूप से, स्वतंत्र रूप से वितरित किए जाते हैं, प्रत्येक सामान्य वितरण के साथ 0 और इसी प्रकार का विचरण होता है। एमए 1 द्वारा दर्शाए गए औसत मॉडल को ले जाने वाला 1 वां क्रम है। xt म्यू wt theta1w। एमए 2 द्वारा चिह्नित औसत मॉडल, चलती 2 नयी क्रम है। xt म्यू wt theta1w theta2w। क्यू वें क्रम औसत मॉडल हिल, एमए क्यू द्वारा निरूपित है। कई पाठ्यपुस्तकों और सॉफ्टवेयर प्रोग्राम मॉडल के पहले नकारात्मक संकेतों के साथ मॉडल को परिभाषित करते हैं यह मॉडल के सामान्य सैद्धांतिक गुणों को परिवर्तित नहीं करता है, हालांकि यह अनुमानित गुणांक मानों के बीजीय संकेत को फ्लिप करता है और अनिर्धारित शर्तों में एसीएफ और वैरिएन्स के लिए फ़ार्मुलों आपको यह सत्यापित करने के लिए अपने सॉफ़्टवेयर की जांच करने की आवश्यकता है कि नकारात्मक या सकारात्मक संकेतों का इस्तेमाल सही ढंग से लिखने के लिए किया गया है ताकि अनुमानित मॉडल आर अपने अंतर्निहित मॉडल में सकारात्मक संकेतों का उपयोग कर सकें, जैसा कि हम यहां करते हैं। एक समय श्रृंखला के सैद्धांतिक गुण एक एमए 1 मॉडल। नोट करें कि सैद्धांतिक एसीएफ में केवल नोजेरो वैल्यू अंतराल के लिए है 1 सभी अन्य autocorrelations 0 हैं इसलिए इस तरह एक महत्वपूर्ण autocorrelation के साथ एक नमूना एसीएफ 1 अंतराल पर संभव एमए 1 मॉडल का सूचक है। इच्छुक छात्रों के लिए, इन गुणों के सबूत इस हैंडआउट के लिए एक परिशिष्ट हैं। उदाहरण 1 मान लीजिए कि एक एमए 1 मॉडल एक्सटी 10 wt 7 w t-1 है जहां wt overset N 0,1 इस प्रकार गुणांक 1 0 7 गु ई सैद्धांतिक एसीएफ द्वारा दिया जाता है। इस एसीएफ के एक भूखंड के अनुसार। साजिश सिर्फ दिखाया गया है 1 1 7 7 के साथ 1 एमए 1 के लिए सैद्धांतिक एसीएफ है, एक नमूना आम तौर पर ऐसे स्पष्ट पैटर्न को आर का उपयोग करते हुए प्रदान करता है, हम नकली n 100 नमूना मूल्य मॉडल का उपयोग करते हुए 10 x 7 w t-1 जहां w t. iid N 0,1 इस अनुकरण के लिए, नमूना डेटा का एक समय श्रृंखला की साजिश के बाद हम इस साजिश से बहुत कुछ नहीं बता सकते हैं। नमूना के लिए नमूना ACF डेटा निम्नानुसार है, हम अंतराल 1 पर एक स्पाइक देख रहे हैं, इसके बाद सामान्यत: गैर-महत्वपूर्ण मानों के लिए पिछला 1 ध्यान दें कि नमूना एसीएफ अंतर्निहित एमए 1 के सैद्धांतिक पैटर्न से मेल नहीं खाता है, जो कि पिछले 1 के सभी ऑटोकोएरेलेशन के लिए 0 ए अलग-अलग नमूने में नीचे दिखाए गए एक अलग नमूने एसीएफ होगा, लेकिन संभवतः एक ही व्यापक विशेषताएं हैं। एक एमए 2 मॉडल के साथ एक टाइम सीरीज़ का सैद्धांतिक गुण। एमए 2 मॉडल के लिए, सैद्धांतिक गुण निम्नलिखित हैं। नोट करें कि केवल नोजेरोओ सैद्धांतिक एसीएफ में मूल्यों के लिए 1 और 2 ऑटोकॉररलैट लेटे हैं उच्च गड़बड़ियों के लिए आयन 0 हैं, इसलिए 1 और 2 की गिनती पर महत्वपूर्ण autocorrelations के साथ एक नमूना एसीएफ, लेकिन उच्च गलतियों के लिए गैर-महत्वपूर्ण autocorrelations एक संभावित एमए 2 मॉडल इंगित करता है। आईआईडी एन 0,1 गुणांक 1 0 और 2 0 3 चूंकि यह एक एमए 2 है, सैद्धांतिक एसीएफ में केवल 1 और 2 के स्तर पर नोजरोज्य मूल्य होंगे। सैद्धांतिक एसीएफ के एक भूखंड निम्नलिखित हैं। लगभग हमेशा मामला होता है, नमूना डेटा जीने में काफी मायने रखता है तो पूरी तरह से सिद्धांत के रूप में हम नमूने के लिए 150 नमूना मूल्य मॉडल xt 10 wt 5 w t-1 3 w t-2 जहां w t. iid N 0,1 डेटा श्रृंखला का समय श्रृंखला प्लॉट निम्नानुसार है: एमए 1 नमूना डेटा, आप इसके बारे में ज्यादा नहीं बता सकते हैं। नकली डेटा के लिए नमूना एसीएफ निम्न प्रकार की स्थितियों के लिए विशिष्ट है, जहां एक एमए 2 मॉडल उपयोगी हो सकता है दो आंकड़े महत्वपूर्ण रूप से महत्वपूर्ण हैं जो 1 और 2 के पीछे हैं अन्य लैगों के लिए महत्वपूर्ण मान ध्यान दें कि नमूनाकरण त्रुटि के कारण, नमूना ACF से मिलान नहीं हुआ सैद्धांतिक पैटर्न बिल्कुल. एसीएफ सामान्य एमए क्यू मॉडल के लिए. सामान्य रूप से एमए क्यू मॉडलों की एक संपत्ति यह है कि पहली क्ष लीग के लिए नोजरियो ऑटोोक्रैरेलेशन और सभी लगी घड़ियों के लिए 0 स्वायत्तताएं हैं। 1 और rho1 के मूल्यों के बीच कनेक्शन की अद्वितीयता एमए 1 मॉडल में एमए 1 मॉडल में, 1 के किसी भी मूल्य के लिए पारस्परिक 1 1 के लिए एक ही मूल्य देता है। उदाहरण के लिए, 1 के लिए 0 का उपयोग करें और 1 का उपयोग करें 1 0 2 2 के लिए 1 आप rho1 0 4 प्राप्त करेंगे दोनों उदाहरणों में। एक सैद्धांतिक प्रतिबंध को संतुष्ट करने के लिए उल्लिखित कहा गया है, हम एमए 1 मॉडल को 1 से कम से कम मूल्य के साथ मूल्य रखने के लिए प्रतिबंधित करते हैं। सिर्फ उदाहरण दिए गए उदाहरण में, 1 0 5 एक मान्य पैरामीटर मूल्य होगा, जबकि 1 1 0 5 2 नहीं होगा। एमए मॉडल की अनुपलब्धता। एक एमए मॉडल को उलटा होना कहा जाता है, यदि यह एक समन्वित असीम ऑर्डर एआर मॉडल के बराबर है, तो हम इसका मतलब यह है कि एआर गुणांक 0 से कम हो जाते हैं जैसा कि हम समय पर वापस जाते हैं। अनदेखी एक क्रमादेशित प्रोग्राम है समय श्रृंखला सॉफ्टवेयर coeff अनुमान लगाने के लिए इस्तेमाल किया एमए पदों के साथ मॉडल के आईसीएन्ट्स यह डेटा विश्लेषण में कुछ नहीं है, यह एमए 1 मॉडल के लिए अपरिवर्तनीय प्रतिबंध के बारे में अतिरिक्त जानकारी दी गई है। परिशिष्ट में दिया गया एडवांस थ्योरी नोट एक निर्दिष्ट एसीएफ के साथ एमए क्वालिटी मॉडल के लिए, केवल एक अपरिवर्तनीय मॉडल अनुपस्थिति के लिए आवश्यक शर्त यह है कि गुणांक के मूल्य ऐसे हैं, जैसे समीकरण 1- 1 y-- qyq 0 में y के लिए समाधान होते हैं जो यूनिट सर्कल के बाहर होते हैं। उदाहरण के लिए कोड। उदाहरण 1 में, हमने मॉडल के सैद्धांतिक एसीएफ 10 वेट 7 व टी -1 और फिर इस मॉडल से सिम्युटेड एन 150 वैल्यू और सैमेटेड डेटा के लिए सैम्पल टाइम सीरीज़ और नमूना एसीएफ का सैद्धांतिक एसीएफ़ साजिश करने के लिए इस्तेमाल किए गए आर कमांड थे। एफ़फमा 1 एआरमाएक्फ मा सी 0 7, एमए 1 के लिए 1 एटीएटी के साथ 10 एटीएक्स की वजह से आईटीए 1 0 7 लेट्स 10 10 में एक वेरिएबल नाम दिया गया है जो कि लगी है जो कि 0 से 10 प्लॉट लग्ज, एसीएफएमए 1, एक्सली सी 1,10, वाईलाब आर, टाइप एच, एमए 1 के लिए मुख्य एसीएफ withta1 0 7 abline h 0 साजिश में एक क्षैतिज अक्ष जोड़ता है ई पहले कमांड एसीएफ को निर्धारित करता है और इसे एक्टिफा 1 नामक एक ऑब्जेक्ट में नामित करता है जिसे नाम दिया जाता है। प्लॉट कमांड को 3 कमांड प्लॉट्स को एसीएफ वैल्यू बनाम एग्.एफ़ वैल्यू के लिए 1 से 10 की लंबाई के लिए खड़ा होता है ylab पैरामीटर y - अक्ष को लेबल करता है और मुख्य पैरामीटर साजिश पर खिताब। एसीएफ के संख्यात्मक मूल्यों को देखने के लिए बस acfma1 कमांड का उपयोग करें। सिमुलेशन और भूखंड निम्नलिखित कमानों के साथ किए गए थे सूची मा सी 0 7 एमए 1 x एक्ससी 10 से एन 150 मूल्यों को सिम्युलेट करता है 10 मतलब बनाने के लिए 10 सिमुलेशन का मतलब 0 प्लॉट एक्स, टाइप बी, मुख्य सिम्युटेड एमए 1 डेटा एसीएफ एक्स, एक्सली सी 1,10, सिम्युलेटेड नमूना डेटा.उदाहरण 2 में, हमने इस मॉडल के सैद्धांतिक एसीएफ का नमूना बना दिया है, मॉडल 10 ्टीटी 5 डब्लू टी -1 3 डब्लू टी -2 और फिर इस मॉडल से सिम्युटेड एन 150 वैल्यू लगाया और सैम्यूलेट के लिए नमूना समय श्रृंखला और नमूना एसीएफ लगाई। डेटा का उपयोग किया गया आर कमांड थे। एफ़फा 2 एआरमाएक्फ मा सी 0,0,0,0, एसीएमटीए 2 लेट्स 0 10 प्लॉट लेट्स, एसीएफएमए 2, एक्सली सी 1,10, एलएलआर आर, टाइप एच, एमए 2 के लिए मुख्य एसीएफ थीटा 1 0 5, थेटा 2 0 3 abline h 0 list ma c 0 5, 0 3 x xc 10 प्लॉट x, टाइप बी, मुख्य सिम्युटेड एमए 2 सीरीज़ एक्सएफ एक्स, एक्सली सी 1,10, सिम्युलेटेड एमए 2 डेटा के लिए मुख्य एसीएफ. एपेंडिक्स एमए 1 के गुणों का सबूत दिलचस्पी छात्रों के लिए, यहां एमए 1 मॉडल के सैद्धांतिक गुणों के प्रमाण हैं। वेरिएंस पाठ xt टेक्स्ट म्यू वेट थिटे 1 डब्ल्यू 0 टेक्स्ट डब्ल्यूटी टेक्स्ट थीटा 1 वी सिग्मा 2 ड्वेटाइट 21 सिग्मा 2 डब्ल्यू 1 थीटा 21 सिग्मा 2 वा। जब 1 एच, पिछला एक्सप्रेशन 1 किसी भी एच 2 के लिए w 2 , पिछले अभिव्यक्ति 0 कारण यह है कि, किसी भी kj आगे के लिए wt ई wkwj 0 की आजादी की परिभाषा के कारण, क्योंकि wt का मतलब 0, ई wjwj ई wj 2 w 2. एक समय श्रृंखला के लिए। इस परिणाम प्राप्त करने के लिए लागू करें एसीएफ ऊपर दिया गया। एक अवरवरित एमए मॉडल वह है जिसे एक अनंत ऑर्डर एआर मॉडल के रूप में लिखा जा सकता है, जिससे एआर गुणांक 0 तक पहुंच जाता है, जैसा कि हम अनंत समय पर वापस जाते हैं हम एमए 1 मॉडल के लिए अपरिवर्तनीय दिखेंगे। फिर समीकरण में w t-1 के लिए विकल्प रिश्ते 2। 3 जीटी वाइटी theta1 z - theta1w wt theta1z - थीटा 2w। समय टी 2 समीकरण 2 हो जाता है। फिर हम समीकरण में w t-2 के लिए रिश्ते 4 का स्थान 3. zt wt theta1 z - थीटा 21w wt theta1z - थीटा 21 z - theta1w wt theta1z - theta1 2z थीटा 31w। अगर हम असीम रूप से जारी रहेगा, तो हम अनंत ऑर्डर एआर मॉडल प्राप्त करेंगे। zt wt theta1 z - थीटा 21z थीटा 31z - थीटा 41z डॉट्स। हालांकि, अगर 1 1, गुणांकों को z के लगी गुणा करने के लिए आकार में असीम रूप से बढ़ेगा जैसा कि हम समय में आगे बढ़ते हैं इसे रोकने के लिए, हमें 1 1 की आवश्यकता है एक अतुलनीय एमए 1 मॉडल के लिए शर्त। अनन्त ऑर्डर एमए मॉडल। 3 सप्ताह में, हम देखेंगे कि एआर 1 मॉडल को एक अनंत ऑर्डर एमए मॉडल में बदला जा सकता है। xt-mu wt ph1 1f phi 21w डॉट्स phi k1 w डॉट्स राशि phi j1w। पिछले श्वेत शोर शब्दों का यह सार एआर 1 के कारण का प्रतिनिधित्व के रूप में जाना जाता है, दूसरे शब्दों में, xt एक विशेष प्रकार का एमए है, जिसमें अनंत संख्या समय पर वापस जाना यह एक अनंत आदेश एमए या एमए एक कमानिक आदेश एमए कहा जाता है एक अनंत आदेश एआर और किसी भी परिमाण आदेश एआर एक अनंत आदेश एमए है। 1 सप्ताह पहले, हमने उल्लेख किया कि एक स्थिर एआर 1 के लिए एक आवश्यकता यह है कि 1 1 चलिए प्रस्तुति का प्रतिनिधित्व करते हुए वार xt की गणना करते हैं.इस अंतिम चरण में ज्यामितीय श्रृंखला के बारे में एक मूल तथ्य का उपयोग किया गया है, जिसके लिए phi1 1 की आवश्यकता होती है, अन्यथा सीरीज डिवर्जर्स .2 1 मूविंग मॉडेल्स एमए मॉडल। एआरआईएए मॉडल के रूप में जाना जाने वाला टाइम सीरीज मॉडल में आटोमैरेसिव शब्दों और या चलने की औसत शर्तों 1 सप्ताह में, हमने चर के लिए एक समय श्रृंखला मॉडल में एक आटोमैसेजिव शब्द सीखा है उदाहरण के लिए, उदाहरण के लिए, एक अंतराल 1 आत्मकेंद्रित शब्द एक्स गुणांक गुणांक द्वारा गुणा किया जाता है यह सबक परिभाषित करता है चलती औसत शब्द। एक mov एक समय श्रृंखला मॉडल में औसत अवधि एक गुणांक द्वारा गुणा की गई एक पिछली गलती होती है। लेफ्ट वाफ्ट ओवरेट एन 0, सिग्मा 2 डब्ल्यू, जिसका अर्थ है कि वेट समान रूप से, स्वतंत्र रूप से वितरित किए जाते हैं, प्रत्येक सामान्य वितरण के साथ 0 और समान विचरण वाले हैं। एमए 1 द्वारा दर्शाए गए औसत मॉडल को स्थानांतरित करने वाला 1 ऑर्डर है। xt म्यू wt theta1w। एमए 2 द्वारा चिह्नित औसत मॉडल, चलती 2 नयी क्रम है। xt म्यू wt theta1w theta2w। क्यू वें क्रम औसत मॉडल हिल, एमए क्यू द्वारा निरूपित है। कई पाठ्यपुस्तकों और सॉफ्टवेयर प्रोग्राम मॉडल के पहले नकारात्मक संकेतों के साथ मॉडल को परिभाषित करते हैं यह मॉडल के सामान्य सैद्धांतिक गुणों को परिवर्तित नहीं करता है, हालांकि यह अनुमानित गुणांक मानों के बीजीय संकेत को फ्लिप करता है और अनिर्धारित शर्तों में एसीएफ और वैरिएन्स के लिए फ़ार्मुलों आपको यह सत्यापित करने के लिए अपने सॉफ़्टवेयर की जांच करने की आवश्यकता है कि नकारात्मक या सकारात्मक संकेतों का इस्तेमाल सही ढंग से लिखने के लिए किया गया है ताकि अनुमानित मॉडल आर अपने अंतर्निहित मॉडल में सकारात्मक संकेतों का उपयोग कर सकें, जैसा कि हम यहां करते हैं। एक समय श्रृंखला के सैद्धांतिक गुण एक एमए 1 मॉडल। नोट करें कि सैद्धांतिक एसीएफ में केवल नोजेरो वैल्यू अंतराल के लिए है 1 सभी अन्य autocorrelations 0 हैं इसलिए इस तरह एक महत्वपूर्ण autocorrelation के साथ एक नमूना एसीएफ 1 अंतराल पर संभव एमए 1 मॉडल का सूचक है। इच्छुक छात्रों के लिए, इन गुणों के सबूत इस हैंडआउट के लिए एक परिशिष्ट हैं। उदाहरण 1 मान लीजिए कि एक एमए 1 मॉडल एक्सटी 10 wt 7 w t-1 है जहां wt overset N 0,1 इस प्रकार गुणांक 1 0 7 गु ई सैद्धांतिक एसीएफ द्वारा दिया जाता है। इस एसीएफ के एक भूखंड के अनुसार। साजिश सिर्फ दिखाया गया है 1 1 7 7 के साथ 1 एमए 1 के लिए सैद्धांतिक एसीएफ है, एक नमूना आम तौर पर ऐसे स्पष्ट पैटर्न को आर का उपयोग करते हुए प्रदान करता है, हम नकली n 100 नमूना मूल्य मॉडल का उपयोग करते हुए 10 x 7 w t-1 जहां w t. iid N 0,1 इस अनुकरण के लिए, नमूना डेटा का एक समय श्रृंखला की साजिश के बाद हम इस साजिश से बहुत कुछ नहीं बता सकते हैं। नमूना के लिए नमूना ACF डेटा निम्नानुसार है, हम अंतराल 1 पर एक स्पाइक देख रहे हैं, इसके बाद सामान्यत: गैर-महत्वपूर्ण मानों के लिए पिछला 1 ध्यान दें कि नमूना एसीएफ अंतर्निहित एमए 1 के सैद्धांतिक पैटर्न से मेल नहीं खाता है, जो कि पिछले 1 के सभी ऑटोकोएरेलेशन के लिए 0 ए अलग-अलग नमूने में नीचे दिखाए गए एक अलग नमूने एसीएफ होगा, लेकिन संभवतः एक ही व्यापक विशेषताएं हैं। एक एमए 2 मॉडल के साथ एक टाइम सीरीज़ का सैद्धांतिक गुण। एमए 2 मॉडल के लिए, सैद्धांतिक गुण निम्नलिखित हैं। नोट करें कि केवल नोजेरोओ सैद्धांतिक एसीएफ में मूल्यों के लिए 1 और 2 ऑटोकॉररलैट लेटे हैं उच्च गड़बड़ियों के लिए आयन 0 हैं, इसलिए 1 और 2 की गिनती पर महत्वपूर्ण autocorrelations के साथ एक नमूना एसीएफ, लेकिन उच्च गलतियों के लिए गैर-महत्वपूर्ण autocorrelations एक संभावित एमए 2 मॉडल इंगित करता है। आईआईडी एन 0,1 गुणांक 1 0 और 2 0 3 चूंकि यह एक एमए 2 है, सैद्धांतिक एसीएफ में केवल 1 और 2 के स्तर पर नोजरोज्य मूल्य होंगे। सैद्धांतिक एसीएफ के एक भूखंड निम्नलिखित हैं। लगभग हमेशा मामला होता है, नमूना डेटा जीने में काफी मायने रखता है तो पूरी तरह से सिद्धांत के रूप में हम नमूने के लिए 150 नमूना मूल्य मॉडल xt 10 wt 5 w t-1 3 w t-2 जहां w t. iid N 0,1 डेटा श्रृंखला का समय श्रृंखला प्लॉट निम्नानुसार है: एमए 1 नमूना डेटा, आप इसके बारे में ज्यादा नहीं बता सकते हैं। नकली डेटा के लिए नमूना एसीएफ निम्न प्रकार की स्थितियों के लिए विशिष्ट है, जहां एक एमए 2 मॉडल उपयोगी हो सकता है दो आंकड़े महत्वपूर्ण रूप से महत्वपूर्ण हैं जो 1 और 2 के पीछे हैं अन्य लैगों के लिए महत्वपूर्ण मान ध्यान दें कि नमूनाकरण त्रुटि के कारण, नमूना ACF से मिलान नहीं हुआ सैद्धांतिक पैटर्न बिल्कुल. एसीएफ सामान्य एमए क्यू मॉडल के लिए. सामान्य रूप से एमए क्यू मॉडलों की एक संपत्ति यह है कि पहली क्ष लीग के लिए नोजरियो ऑटोोक्रैरेलेशन और सभी लगी घड़ियों के लिए 0 स्वायत्तताएं हैं। 1 और rho1 के मूल्यों के बीच कनेक्शन की अद्वितीयता एमए 1 मॉडल में एमए 1 मॉडल में, 1 के किसी भी मूल्य के लिए पारस्परिक 1 1 के लिए एक ही मूल्य देता है। उदाहरण के लिए, 1 के लिए 0 का उपयोग करें और 1 का उपयोग करें 1 0 2 2 के लिए 1 आप rho1 0 4 प्राप्त करेंगे दोनों उदाहरणों में। एक सैद्धांतिक प्रतिबंध को संतुष्ट करने के लिए उल्लिखित कहा गया है, हम एमए 1 मॉडल को 1 से कम से कम मूल्य के साथ मूल्य रखने के लिए प्रतिबंधित करते हैं। सिर्फ उदाहरण दिए गए उदाहरण में, 1 0 5 एक मान्य पैरामीटर मूल्य होगा, जबकि 1 1 0 5 2 नहीं होगा। एमए मॉडल की अनुपलब्धता। एक एमए मॉडल को उलटा होना कहा जाता है, यदि यह एक समन्वित असीम ऑर्डर एआर मॉडल के बराबर है, तो हम इसका मतलब यह है कि एआर गुणांक 0 से कम हो जाते हैं जैसा कि हम समय पर वापस जाते हैं। अनदेखी एक क्रमादेशित प्रोग्राम है समय श्रृंखला सॉफ्टवेयर coeff अनुमान लगाने के लिए इस्तेमाल किया एमए पदों के साथ मॉडल के आईसीएन्ट्स यह डेटा विश्लेषण में कुछ नहीं है, यह एमए 1 मॉडल के लिए अपरिवर्तनीय प्रतिबंध के बारे में अतिरिक्त जानकारी दी गई है। परिशिष्ट में दिया गया एडवांस थ्योरी नोट एक निर्दिष्ट एसीएफ के साथ एमए क्वालिटी मॉडल के लिए, केवल एक अपरिवर्तनीय मॉडल अनुपस्थिति के लिए आवश्यक शर्त यह है कि गुणांक के मूल्य ऐसे हैं, जैसे समीकरण 1- 1 y-- qyq 0 में y के लिए समाधान होते हैं जो यूनिट सर्कल के बाहर होते हैं। उदाहरण के लिए कोड। उदाहरण 1 में, हमने मॉडल के सैद्धांतिक एसीएफ 10 वेट 7 व टी -1 और फिर इस मॉडल से सिम्युटेड एन 150 वैल्यू और सैमेटेड डेटा के लिए सैम्पल टाइम सीरीज़ और नमूना एसीएफ का सैद्धांतिक एसीएफ़ साजिश करने के लिए इस्तेमाल किए गए आर कमांड थे। एफ़फमा 1 एआरमाएक्फ मा सी 0 7, एमए 1 के लिए 1 एटीएटी के साथ 10 एटीएक्स की वजह से आईटीए 1 0 7 लेट्स 10 10 में एक वेरिएबल नाम दिया गया है जो कि लगी है जो कि 0 से 10 प्लॉट लग्ज, एसीएफएमए 1, एक्सली सी 1,10, वाईलाब आर, टाइप एच, एमए 1 के लिए मुख्य एसीएफ withta1 0 7 abline h 0 साजिश में एक क्षैतिज अक्ष जोड़ता है ई पहले कमांड एसीएफ को निर्धारित करता है और इसे एक्टिफा 1 नामक एक ऑब्जेक्ट में नामित करता है जिसे नाम दिया जाता है। प्लॉट कमांड को 3 कमांड प्लॉट्स को एसीएफ वैल्यू बनाम एग्.एफ़ वैल्यू के लिए 1 से 10 की लंबाई के लिए खड़ा होता है ylab पैरामीटर y - अक्ष को लेबल करता है और मुख्य पैरामीटर साजिश पर खिताब। एसीएफ के संख्यात्मक मूल्यों को देखने के लिए बस acfma1 कमांड का उपयोग करें। सिमुलेशन और भूखंड निम्नलिखित कमानों के साथ किए गए थे सूची मा सी 0 7 एमए 1 x एक्ससी 10 से एन 150 मूल्यों को सिम्युलेट करता है 10 मतलब बनाने के लिए 10 सिमुलेशन का मतलब 0 प्लॉट एक्स, टाइप बी, मुख्य सिम्युटेड एमए 1 डेटा एसीएफ एक्स, एक्सली सी 1,10, सिम्युलेटेड नमूना डेटा.उदाहरण 2 में, हमने इस मॉडल के सैद्धांतिक एसीएफ का नमूना बना दिया है, मॉडल 10 ्टीटी 5 डब्लू टी -1 3 डब्लू टी -2 और फिर इस मॉडल से सिम्युटेड एन 150 वैल्यू लगाया और सैम्यूलेट के लिए नमूना समय श्रृंखला और नमूना एसीएफ लगाई। डेटा का उपयोग किया गया आर कमांड थे। एफ़फा 2 एआरमाएक्फ मा सी 0,0,0,0, एसीएमटीए 2 लेट्स 0 10 प्लॉट लेट्स, एसीएफएमए 2, एक्सली सी 1,10, एलएलआर आर, टाइप एच, एमए 2 के लिए मुख्य एसीएफ थीटा 1 0 5, थेटा 2 0 3 abline h 0 list ma c 0 5, 0 3 x xc 10 प्लॉट x, टाइप बी, मुख्य सिम्युटेड एमए 2 सीरीज़ एक्सएफ एक्स, एक्सली सी 1,10, सिम्युलेटेड एमए 2 डेटा के लिए मुख्य एसीएफ. एपेंडिक्स एमए 1 के गुणों का सबूत दिलचस्पी छात्रों के लिए, यहां एमए 1 मॉडल के सैद्धांतिक गुणों के प्रमाण हैं। वेरिएंस पाठ xt टेक्स्ट म्यू वेट थिटे 1 डब्ल्यू 0 टेक्स्ट डब्ल्यूटी टेक्स्ट थीटा 1 वी सिग्मा 2 ड्वेटाइट 21 सिग्मा 2 डब्ल्यू 1 थीटा 21 सिग्मा 2 वा। जब 1 एच, पिछला एक्सप्रेशन 1 किसी भी एच 2 के लिए w 2 , पिछले अभिव्यक्ति 0 कारण यह है कि, किसी भी kj आगे के लिए wt ई wkwj 0 की आजादी की परिभाषा के कारण, क्योंकि wt का मतलब 0, ई wjwj ई wj 2 w 2. एक समय श्रृंखला के लिए। इस परिणाम प्राप्त करने के लिए लागू करें एसीएफ ऊपर दिया गया। एक अवरवरित एमए मॉडल वह है जिसे एक अनंत ऑर्डर एआर मॉडल के रूप में लिखा जा सकता है, जिससे एआर गुणांक 0 तक पहुंच जाता है, जैसा कि हम अनंत समय पर वापस जाते हैं हम एमए 1 मॉडल के लिए अपरिवर्तनीय दिखेंगे। फिर समीकरण में w t-1 के लिए विकल्प रिश्ते 2। 3 जीटी वाइटी theta1 z - theta1w wt theta1z - थीटा 2w। समय टी 2 समीकरण 2 हो जाता है। फिर हम समीकरण में w t-2 के लिए रिश्ते 4 का स्थान 3. zt wt theta1 z - थीटा 21w wt theta1z - थीटा 21 z - theta1w wt theta1z - theta1 2z थीटा 31w। अगर हम असीम रूप से जारी रहेगा, तो हम अनंत ऑर्डर एआर मॉडल प्राप्त करेंगे। zt wt theta1 z - थीटा 21z थीटा 31z - थीटा 41z डॉट्स। हालांकि, अगर 1 1, गुणांकों को z के लगी गुणा करने के लिए आकार में असीम रूप से बढ़ेगा जैसा कि हम समय में आगे बढ़ते हैं इसे रोकने के लिए, हमें 1 1 की आवश्यकता है एक अतुलनीय एमए 1 मॉडल के लिए शर्त। अनन्त ऑर्डर एमए मॉडल। 3 सप्ताह में, हम देखेंगे कि एआर 1 मॉडल को एक अनंत ऑर्डर एमए मॉडल में बदला जा सकता है। xt-mu wt ph1 1f phi 21w डॉट्स phi k1 w डॉट्स राशि phi j1w। पिछले श्वेत शोर शब्दों का यह सार एआर 1 के कारण का प्रतिनिधित्व के रूप में जाना जाता है, दूसरे शब्दों में, xt एक विशेष प्रकार का एमए है, जिसमें अनंत संख्या समय पर वापस जाना यह एक अनंत आदेश एमए या एमए एक कमानिक आदेश एमए कहा जाता है एक अनंत आदेश एआर और किसी भी परिमाण आदेश एआर एक अनंत आदेश एमए है। 1 सप्ताह पहले, हमने उल्लेख किया कि एक स्थिर एआर 1 के लिए एक आवश्यकता यह है कि 1 1 चलिए प्रस्तुति का प्रतिनिधित्व करते हुए वार xt की गणना करते हैं। यह अंतिम चरण ज्यामितीय श्रृंखला के बारे में एक मूल तथ्य का उपयोग करता है जिसके लिए phi1 1 की आवश्यकता होती है, अन्यथा सीरीज डुप्लिकेट होती है। उदाहरण के लिए randomness जांचें। डेटा सेट में यादृच्छिकता की जाँच करने के लिए इस्तेमाल किया गया उपकरण यह यादृच्छिकता समय के समय के समय में डेटा मूल्यों के लिए स्वत: सम्बन्ध कंप्यूटिंग द्वारा पता लगाई जाती है यदि यादृच्छिक, ऐसे स्वत: सम्बन्ध किसी भी और सभी समय-अंतराल के अलग-अलग होने के लिए शून्य के पास होने चाहिए, यदि बिना-यादृच्छिक, फिर एक या अधिक स्वोक्रोकेरलटियो एनएस काफी महत्वपूर्ण होगा। इसके अलावा, ऑटोक्लोरेलेशन प्लॉट्स को बॉक्स-जेनकिंस के आटोमैरेसिज के लिए मॉडल पहचान चरण में उपयोग किया जाता है, औसत समय श्रृंखला मॉडल चल रहा है। ऑटोकोएरलिलेशन केवल एकमात्र रैंडमियस का उपाय है। नोट करें कि uncorrelated अनिवार्य रूप से यादृच्छिक डेटा का मतलब नहीं है महत्वपूर्ण आत्मसंयम यादृच्छिक नहीं है हालांकि, डेटा जो महत्वपूर्ण ऑटोकोएरलिलेशन नहीं दिखाता है, वह अब भी अन्य तरीकों से गैर-यादृच्छिकता प्रदर्शित कर सकता है Autocorrelation केवल यादृच्छिकता का एक उपाय है मॉडल मान्यता के संदर्भ में जो कि प्राथमिकता के प्रकार हैं, हम हैंडबुक में डिकस करते हैं, ऑटोकोएरलिलिटी की जांच आम तौर पर यादृच्छिकता का एक पर्याप्त परीक्षण है क्योंकि खराब फिटिंग मॉडलों के अवशेष गैर-सूक्ष्म यादृच्छिकता को प्रदर्शित करते हैं हालांकि, कुछ अनुप्रयोगों को यादृच्छिकता का अधिक कठोर निर्धारण की आवश्यकता होती है इन मामलों में, परीक्षणों की एक बैटरी, जिसमें जांच हो सकती है स्व-पारस्परिक संबंध लागू होते हैं, क्योंकि डेटा कई अलग-अलग और अक्सर सूक्ष्म में बिना-यादृच्छिक हो सकता है तरीके: जहां यादृच्छिकता की एक और कठोर जांच की ज़रूरत होती है यादृच्छिक संख्या जनरेटर का परीक्षण करना होगा। नमूना प्लॉट ऑटोकोएरलेशन को करीब से शून्य होना चाहिए, इस उदाहरण में ऐसा नहीं है और इस प्रकार यादृच्छिक धारणा विफल हो जाती है.यह नमूना स्वत: पारस्परिक संबंध साजिश से पता चलता है कि समय श्रृंखला यादृच्छिक नहीं है, बल्कि आसन्न और आस-पास के अवलोकन के बीच एक उच्च डिग्री स्वत: पारस्परिक संबंध है। डीफिनीशन आरएच बनाम एच। एटोकोरेरलेशन प्लॉट्स द्वारा बनाई गई है। व्हर्टिकल अक्ष ऑटोकोएरलिलेशन गुणांक। जहां सी एच ऑटोोकॉरिएंस फ़ंक्शन है। और सी 0 विचरण फ़ंक्शन है। नोट करें कि आर एच -1 और 1 के बीच है। नोट्स कि कुछ स्रोत autocovariance फ़ंक्शन के लिए निम्न सूत्र का उपयोग कर सकते हैं। हालाँकि इस परिभाषा में कम पूर्वाग्रह है, 1 एन के निर्माण में कुछ वांछनीय सांख्यिकीय गुण हैं और विवरणों में सबसे आम तौर पर इस्तेमाल किया जाने वाला विवरण, विवरण के लिए चेट्फ़ील्ड में पेज 20 और 49-50 देखें। आवाज़ अक्ष समय अंतराल 1, 2, 3. उपरोक्त लाइन भी कई क्षैतिज संदर्भ लाइनों को लगाया जाता है मध्यम रेखा शून्य पर होती है अन्य चार पंक्तियां 95 और 99 आत्मविश्वास बैंड हैं कि ध्यान दें कि आत्मविश्वास बैंड बनाने के लिए दो अलग-अलग फ़ार्मुले हैं। यदि स्वचिकित्सा की साजिश को यादृच्छिकता के लिए परीक्षण करने के लिए उपयोग किया जाता है यानी कोई समय नहीं है डेटा में निर्भरता, निम्न सूत्र की सिफारिश की जाती है। जहां एन नमूना आकार है, z मानक सामान्य वितरण का संचयी वितरण समारोह है और अल्फा महत्वपूर्ण स्तर है इस मामले में, आत्मविश्वास बैंड ने निश्चित चौड़ाई तय की है जो नमूना पर निर्भर करती है आकार यह एक फार्मूला है जिसका उपयोग ऊपर की साजिश में विश्वास बैंड उत्पन्न करने के लिए किया गया था। एटोकोएरलिलेशन प्लॉट का उपयोग मॉडल पहचान चरण में एआईआईएमए मॉडलों के लिए भी किया जाता है इस मामले में, चलती औसत मॉडल डेटा के लिए माना जाता है और निम्नलिखित विश्वास बैंड उत्पन्न होना चाहिए। जहां के अंतराल है, एन नमूना आकार है, z मानक सामान्य वितरण का संचयी वितरण समारोह है और अल्फा है महत्व का स्तर इस मामले में, अंतराल बढ़ने के साथ आत्मविश्वास बैंड बढ़ता है। autocorrelation प्लॉट निम्नलिखित प्रश्नों के उत्तर प्रदान कर सकते हैं.डेटा यादृच्छिक। आसन्न अवलोकन से संबंधित एक अवलोकन। एक अवलोकन से संबंधित एक अवलोकन दो बार - निकाल दिया आदि। मनाया समय श्रृंखला सफेद शोर है। मनाया समय श्रृंखला sinusoidal है। मनाया समय श्रृंखला autoregressive है। मनाया समय श्रृंखला के लिए एक उपयुक्त मॉडल है। मॉडल है। वैध और पर्याप्त। फार्मूला ss sqrt मान्य है.योजना इंजीनियरिंग के निष्कर्षों की वैधता सुनिश्चित करते हैं। निश्चित मॉडल के साथ यादृच्छिकता, निश्चित भिन्नता और निश्चित वितरण चार मान्यताओं में से एक है, जो आम तौर पर सभी मापन प्रक्रियाओं के अंतर्गत आता है। निम्न तीन कारणों के लिए यादृच्छिक धारणा गंभीर रूप से महत्वपूर्ण है। अधिकांश मानक सांख्यिकीय परीक्षण यादृच्छिकता परीक्षण निष्कर्ष की वैधता सीधे यादृच्छिक धारणा की वैधता से जुड़ी हुई है.बहुत सामान्यतः- इस्तेमाल किए गए सांख्यिकीय फ़ार्मुलों को यादृच्छिक धारणा पर निर्भर करते हैं, नमूना के मानक विचलन का निर्धारण करने के लिए सबसे सामान्य सूत्र सूत्र है। जहां डेटा का मानक विचलन है, हालांकि भारी रूप से इसका इस्तेमाल किया जाता है, इस सूत्र का उपयोग करने से परिणाम कोई भी मूल्य नहीं हैं यादृच्छिक धारणा धारण। बेकायदा डेटा के लिए, डिफ़ॉल्ट मॉडल है। यदि डेटा यादृच्छिक नहीं हैं, तो यह मॉडल गलत और अमान्य है, और मानकों के लिए अनुमान जैसे निरर्थक अनावश्यक और अमान्य हो जाते हैं। संक्षेप में, यदि विश्लेषक करता है यादृच्छिकता के लिए जांच न करें, फिर कई सांख्यिकीय निष्कर्षों की वैधता के बारे में संदेह हो जाता है स्वानुक्रमण संबंधी भूखंड ऐसी यादृच्छिकता की जाँच करने का एक शानदार तरीका है।
Comments
Post a Comment